(via peano)
(via smhup)
A 2-coloring of what results from playing connect-the-dots with the complex numbers zn, for 0 < n < 100, as z varies from ei2.595 to ei2.599.
Mathematica code:
ListAnimate[
Table[
Graphics[
GraphicsComplex[
Table[
{-1^n*Sin[n*a], 1^n*Cos[n*a]}, {n, 0, 100}],
Polygon[Table[i, {i, 1, 100, 1}]]],
PlotRange -> .65, ImageSize -> 500],
{a, 2.59523, 2.59994, .00015}]]
(via proofmathisbeautiful)
Proof: Connecting the dots in the complex plane
This will be an attempt at describing the algorithmic procedure used to generate some of the graphics posted here.
- Start with a line segment of any length L.
- Now pick any angle A in the range 0° to 180°.
- Connect another line segment of the same length as…
Giant Lobelia
Photograph by George F. Mobley
The leaves of a giant lobelia plant, photographed on Mount Kilimanjaro’s Shira Plateau in Tanzania, spiral around the center.
(via peano)
Type 4) form constant: hexagonal lattice
Mathematica code:
h[x_, y_] := Polygon[Table[{Cos[2 Pi k/6] + x, Sin[2 Pi k/6] + y}, {k, 6}]]
HexagonalLattice[t_] :=
Graphics[
{EdgeForm[Thickness[.01]], White,
Table[
h[3 i + 3 ((-1)^j + 1)/4 + Cos[Pi/6] t, Sqrt[3]/2 j + Sin[Pi/6] t],
{i, 15}, {j, 45}]},
ImageSize -> 500, PlotRange -> {{7, 46.2}, {1.8, 39.8}}]
ListAnimate[
Table[
HexagonalLattice[t],
{t, 0, 3.105, .345}]]
f[x_, y_] := {Log[Sqrt[(x)^2 + (y)^2]], ArcTan[x, y]}
ListAnimate[
Table[
ImageTransformation[
HexagonalLattice[t] ,
f[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],
{t, 0, 3.105, .345}]]
(via proofmathisbeautiful)
Jacques Androuet du Cerceau
Leçons de perspective positive (1676)
[Reprint of the ed. of 1576]
(Source: tonguedepressors, via peano)
(via peano)